Direct experimental evaluation of charge scheme performance by a molecular charge-meter.

نویسندگان

  • Roie Yerushalmi
  • Avigdor Scherz
  • Kim K Baldridge
چکیده

The remarkable advances accomplished in the past two decades in theoretical and computational capabilities have made the in silico study of complex chemical systems feasible. However, this progress is in strong contrast to the lag in experimental capabilities relating to the measurement of fundamental chemical quantities within convoluted environments such as solvents or protein milieu. As a result, many works rely extensively on predictions provided by ab initio methodologies without having independent experimental support. Such a proliferation of theory and computational approaches without being substantiated by appropriate experimental data is undesirable. The feasibility of using nickel-bacteriochlorophyll as a molecular potentiometer was recently demonstrated for the systematic evaluation of fragmental charge density transfer for metal complexes in solution, thus providing an experimental assay with high accuracy and sensitivity (better than +/-0.005 e(-); Yerushalmi, R.; Baldridge, K. K.; Scherz, A. J. Am. Chem. Soc. 2003, 125, 12706-12707). Here the experimentally determined fragmental charge density transfer values measured by the molecular potentiometer for metal complexes in solvent are used to provide, for the first time, an independent and critical experimental evaluation of theoretical approaches commonly used in determining atomic charges and fragmental charge density transfer among interacting molecular systems. Importantly, these findings indicate that the natural population analysis (NPA) charge analysis is highly robust and well-suited for determining charge transfer processes involving donor-acceptor coordination interactions. The majority of computational charge schemes fail to provide an accurate chemical picture for the whole range of systems considered here. In cases where the role of electronic correlation varies significantly among chemically related structures, as with mono- and biligated complexes, the widely used electrostatic potential fit-based methods for evaluating atomic charges may prove to be problematic for predictive studies. In such cases, alternative methods that do not rely on the net dipole moment or other higher multipoles of the system for determining charges should be employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental and Comparative Analysis of the Battery Charge Controllers in Off-Grid PV Systems

The study of the battery charge process as the only power storage agent in off-grid systems is of significant importance. The battery charge process has different modes, and the battery in these modes is dependent on the amount of charge. In order to charge the battery in off-grid systems, two charge controllers including Pulse Width Modulation (PWM) and Maximum Power Point Tracker (MPPT) are c...

متن کامل

Studying the effects of pH and molecular charge on the passive and iontophoretic permeation of L-phenylalanine through cellulose acetate membrane

  Iontophoresis is one of the skin permeation enhancement methods involving the transport of drugs through the skin under the effect of electrical current. The effect of molecular charge on the iontophoretic permeation of drugs has not been completely understood yet. Therefore the effect of passive and iontophoretic permeation of L-phenylalanine at pH 3.6 (positive charge) and pH 8 (negative ch...

متن کامل

AN ELECTROMAGNETISM-LIKE ALGORITHM FOR FIXED CHARGE SOLID TRANSPORTATION PROBLEM

Fixed charge solid transportation problem (FCSTP) is one of the main and most important problems in transportation and network research areas. To tackle such an NP-hard problem, An Electromagnetism-like algorithm (EM) is employed. To the best of our knowledge, EM has been considered for any kind of transportation problems. Due to the significant role of parameters on the algorithm’s performance...

متن کامل

Theoretical study for evaluation of corrosion inhibition performance of two thiocarbohydrazide inhibitors

Molecular dynamics (MD) simulation and Density functional theory (DFT) methods were applied to the two thiocarbohydrazides derivatives (T1 and T2) as corrosion inhibitors for carbon steel in aqueous phase. Experimental results have shown that the corrosion rate follows the below order: T1>T2. Quantum chemical parameters such as hardness (η), electrophilicity (ω),polarizability (α), dipole momen...

متن کامل

Quantum Chemical Modeling of N-(2-benzoylphenyl)oxalamate: Geometry Optimization, NMR, FMO, MEP and NBO Analysis Based on DFT Calculations

In the present work, the quantum theoretical calculations of the molecular structure of the (N-(2-benzoylphenyl) oxalamate has been investigated and are evaluated using Density Functional Theory (DFT). The geometry of the title compound was optimized by B3LYP method with 6-311+G(d) basis set. The theoretical 1H and 13C NMR chemical shift (GIAO method) values of the title compound are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 18  شماره 

صفحات  -

تاریخ انتشار 2004